11.4. The Sedelijk Museum Amsterdam problem#

Python code for the Sedelijk Museum Amsterdam design problem (Chapter 9.3). Python code for the shopping mall design problem revisited non-linear example (Chapter 7.2).

Note

Press the rocket symbol on the top right of the page to make the page interactive and play with the code!

Import Packages#

This script is fairly similar to the non-linear shopping mall example. Only the preference functions for objective 1 and 2 are changed, together with the weights.

Note that the non-linear preference curves are created by using an interpolation function called pchip_interpolation.

import micropip
await micropip.install("urllib3 ")
await micropip.install("requests")

import sys
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import pchip_interpolate

from genetic_algorithm_pfm import GeneticAlgorithm
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[1], line 1
----> 1 import micropip
      2 await micropip.install("urllib3 ")
      3 await micropip.install("requests")

ModuleNotFoundError: No module named 'micropip'

Set Weights for Different Objectives#

Set weights for the different objectives.

# set weights for the different objectives
w1 = .5
w2 = 1/24
w3 = 1/24
w4 = 1/24
w5 = 1/24
w6 = 1/24
w7 = 1/24
w8 = 1/24
w9 = 1/24
w10 = 1/24
w11 = 1/24
w12 = 1/24
w13 = 1/24

def objective_p1(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to minimize the investment.
    """

    return pchip_interpolate([70, 71, 74], [100, 70, 0], -((2580-2950) * 14142 + 2950 * (p1 + p2 + p3 + p4 + p5 + p6 + p7) * 100 + 1400 * (s1 + s2 + s3 + s4 +s5) * 100))

def objective_p2(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize p1.
    """
    
    return pchip_interpolate([79.01, 97.03, 101.54], [0, 20, 100], p1)

def objective_p3(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize p2.
    """
    
    return pchip_interpolate([13.54, 13.75, 14.38], [0, 70, 100], p2)

def objective_p4(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize s1.
    """
    
    return pchip_interpolate([6.93, 6.97, 7.14], [0, 80, 100], s1)

def objective_p5(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize p3.
    """
    
    return pchip_interpolate([9.41, 10.50, 13.78], [0, 70, 100], p3)

def objective_p6(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize s2.
    """
    
    return pchip_interpolate([.56, .62, .84], [0, 80, 100], s2)

def objective_p7(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize p4.
    """
    
    return pchip_interpolate([5.25, 6.52, 7.21], [0, 35, 100], p4)

def objective_p8(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize s3.
    """
    
    return pchip_interpolate([74.23, 79.30, 99.60], [0, 80, 100], s3)

def objective_p9(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize p5.
    """
    
    return pchip_interpolate([62.64, 64.17, 70.31], [0, 80, 100], p5)

def objective_p10(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize s4.
    """
    
    return pchip_interpolate([12.07, 12.95, 16.48], [0, 80, 100], s4)

def objective_p11(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize p6.
    """
    
    return pchip_interpolate([31.67, 37.02, 39.90], [0, 35, 100], p6)

def objective_p12(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize p7.
    """
    
    return pchip_interpolate([16.24, 17.76, 22.30], [0, 70, 100], p7)

def objective_p13(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5):
    """
    Objective to maximize s5.
    """
    
    return pchip_interpolate([1.68, 1.91, 2.81], [0, 80, 100], s5)


def objective(variables):
    """
    Objective function that is fed to the GA. Calles the separate preference functions that are declared above.

    :param variables: array with design variable values per member of the population. Can be split by using array
    slicing
    :return: 1D-array with aggregated preference scores for the members of the population.
    """
    # extract 1D design variable arrays from full 'variables' array
    p1 = variables[:, 0]
    p2 = variables[:, 1]
    s1 = variables[:, 2]
    p3 = variables[:, 3]
    s2 = variables[:, 4]
    p4 = variables[:, 5]
    s3 = variables[:, 6]
    p5 = variables[:, 7]
    s4 = variables[:, 8]
    p6 = variables[:, 9]
    p7 = variables[:, 1]
    s5 = variables[:, 11]

    # calculate the preference scores
    p_1 = objective_p1(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_2 = objective_p2(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_3 = objective_p3(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_4 = objective_p4(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_5 = objective_p5(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_6 = objective_p6(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_7 = objective_p7(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_8 = objective_p8(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_9 = objective_p9(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_10 = objective_p10(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_11 = objective_p11(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_12 = objective_p12(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)
    p_13 = objective_p13(p1, p2, s1, p3, s2, p4, s3, p5, s4, p6, p7, s5)

    # aggregate preference scores and return this to the GA
    return [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13], [p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_10, p_11, p_12, p_13]

Define Constraints and Bounds#

Before we can run the optimization, we finally need to define the constraints and bounds.

def constraint_1(variables):
    """Constraint that checks if the sum of the areas x1 and x2 is not lower than 3,000 m2.

    :param variables: ndarray of n-by-m, with n the population size of the GA and m the number of variables.
    :return: list with scores of the constraint
    """
    
    p1 = variables[:, 0]
    p2 = variables[:, 1]
    s1 = variables[:, 2]
    p3 = variables[:, 3]
    s2 = variables[:, 4]
    p4 = variables[:, 5]
    s3 = variables[:, 6]
    p5 = variables[:, 7]
    s4 = variables[:, 8]
    p6 = variables[:, 9]
    p7 = variables[:, 1]
    s5 = variables[:, 11]

    return (p1 + p2 + p3 + p4 + p5 + p6 + p7) * 100 - (14142 + 24007)  # < 0

def constraint_2(variables):
    """Constraint that checks if the sum of the areas x1 and x2 is not lower than 3,000 m2.

    :param variables: ndarray of n-by-m, with n the population size of the GA and m the number of variables.
    :return: list with scores of the constraint
    """
    
    p1 = variables[:, 0]
    p2 = variables[:, 1]
    s1 = variables[:, 2]
    p3 = variables[:, 3]
    s2 = variables[:, 4]
    p4 = variables[:, 5]
    s3 = variables[:, 6]
    p5 = variables[:, 7]
    s4 = variables[:, 8]
    p6 = variables[:, 9]
    p7 = variables[:, 1]
    s5 = variables[:, 11]

    return (s1 + s2 + s3 + s4 + s5) * 100 - 13000  # < 0

def constraint_3(variables):
    """Constraint to ensure the existing building on the central location is completely used

    :param variables: ndarray of n-by-m, with n the population size of the GA and m the number of variables.
    :return: list with scores of the constraint
    """
    
    p1 = variables[:, 0]
    p2 = variables[:, 1]
    s1 = variables[:, 2]
    p3 = variables[:, 3]
    s2 = variables[:, 4]
    p4 = variables[:, 5]
    s3 = variables[:, 6]
    p5 = variables[:, 7]
    s4 = variables[:, 8]
    p6 = variables[:, 9]
    p7 = variables[:, 1]
    s5 = variables[:, 11]

    return ((2580-2950) * 14142 + 2950 * (p1 + p2 + p3 + p4 + p5 + p6 + p7) * 100 + 1400 * (s1 + s2 + s3 + s4 +s5) * 100) - 74 * 1000000 # < 0

# define list with constraints
cons = [['ineq', constraint_1], ['ineq', constraint_2], ['ineq', constraint_3]]

# set bounds for all variables
b1 = [79.01, 101.54] # p1
b2 = [13.54, 14.38]  # p2
b3 = [6.93, 7.14]    # s1
b4 = [9.41, 13.78]   # p3
b5 = [.56, .84]      # s2
b6 = [5.25, 7.21]    # p4
b7 = [74.23, 99.60]  # s3
b8 = [62.64, 70.31]  # p5
b9 = [12.07, 16.48] # s4
b10 = [31.67, 39.90] # p6
b11 = [16.24, 22.30] # p7
b12 = [1.68, 2.81]   # s5

bounds = [b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12]

Graphical Output#

Setup the graphical output.

# create arrays for plotting continuous preference curves
c1 = np.linspace(70, 74)
c2 = np.linspace(7901, 10154)
c3 = np.linspace(1354, 1438)
c4 = np.linspace(693,714)
c5 = np.linspace(941, 1378)
c6 = np.linspace(56, 84)
c7 = np.linspace(525, 721)
c8 = np.linspace(7423,9960)
c9 = np.linspace(6264, 7031)
c10 = np.linspace(1207, 1648)
c11 = np.linspace(3167, 3990)
c12 = np.linspace(1624,2230)
c13 = np.linspace(168,281)

# calculate the preference functions
p1 = pchip_interpolate([70, 71, 74], [100, 70, 0], (c1))
p2 = pchip_interpolate([7901, 9703, 10154], [0, 20, 100], (c2))
p3 = pchip_interpolate([1354, 1375, 1438], [0, 70, 100], (c3))
p4 = pchip_interpolate([693, 697, 714], [0, 80, 100], (c4))
p5 = pchip_interpolate([941, 1050, 1378], [0, 70, 100], (c5))
p6 = pchip_interpolate([56, 62, 84], [0, 80, 100], (c6))
p7 = pchip_interpolate([525, 652, 721], [0, 35, 100], (c7))
p8 = pchip_interpolate([7423, 7930, 9960], [0, 80, 100], (c8))
p9 = pchip_interpolate([6264, 6417, 7031], [0, 80, 100], (c9))
p10 = pchip_interpolate([1207, 1295, 1648], [0, 80, 100], (c10))
p11 = pchip_interpolate([3167, 3702, 3990], [0, 35, 100], (c11))
p12 = pchip_interpolate([1624, 1776, 2230], [0, 70, 100], (c12))
p13 = pchip_interpolate([168, 191, 281], [0, 80, 100], (c13))

# create figure that plots all preference curves and the preference scores of the returned results of the GA
fig = plt.figure(figsize=((10,35)))

font1 = {'size':20}
font2 = {'size':15}

plt.rcParams['font.size'] = '12'
plt.rcParams['savefig.dpi'] = 300

ax1 = fig.add_subplot(7, 2, 1)
ax1.plot(c1, p1, label='Preference curve', color='black')
ax1.set_xlim((70, 74))
ax1.set_ylim((0, 102))
ax1.set_title('Municipality')
ax1.set_xlabel('Investment [$ billion]')
ax1.set_ylabel('Preference score')
ax1.grid()
ax1.legend()
ax1.grid(linestyle = '--')

#fig = plt.figure()
ax2 = fig.add_subplot(7, 2, 2)
ax2.plot(c2, p2, label='Preference curve', color='black')
ax2.set_xlim((7901, 10154))
ax2.set_ylim((0, 102))
ax2.set_title('Museum staff')
ax2.set_xlabel('Exhibitions p1 [m2]')
ax2.set_ylabel('Preference score')
ax2.grid()
ax2.legend()
ax2.grid(linestyle = '--')

#fig = plt.figure()
ax3 = fig.add_subplot(7, 2, 3)
ax3.plot(c3, p3, label='Preference curve', color='black')
ax3.set_xlim((1354, 1438))
ax3.set_ylim((0, 102))
ax3.set_title('Museum staff')
ax3.set_xlabel('Workshops p2 [m2]')
ax3.set_ylabel('Preference score')
ax3.grid()
ax3.legend()
ax3.grid(linestyle = '--')

#fig = plt.figure()
ax4 = fig.add_subplot(7, 2, 4)
ax4.plot(c4, p4, label='Preference curve', color='black')
ax4.set_xlim((693, 714))
ax4.set_ylim((0, 102))
ax4.set_title('Museum staff')
ax4.set_xlabel('Workshops s1 [m2]')
ax4.set_ylabel('Preference score')
ax4.grid()
ax4.legend()
ax4.grid(linestyle = '--')


ax5 = fig.add_subplot(7, 2, 5)
ax5.plot(c5, p5, label='Preference curve', color='black')
ax5.set_xlim((941, 1378))
ax5.set_ylim((0, 102))
ax5.set_title('Museum staff')
ax5.set_xlabel('Education p3 [m2]')
ax5.set_ylabel('Preference score')
ax5.grid()
ax5.legend()
ax5.grid(linestyle = '--')

#fig = plt.figure()
ax6 = fig.add_subplot(7, 2, 6)
ax6.plot(c6, p6, label='Preference curve', color='black')
ax6.set_xlim((56, 84))
ax6.set_ylim((0, 102))
ax6.set_title('Museum staff')
ax6.set_xlabel('Education s2 [m2]')
ax6.set_ylabel('Preference score')
ax6.grid()
ax6.legend()
ax6.grid(linestyle = '--')

#fig = plt.figure()
ax7 = fig.add_subplot(7, 2, 7)
ax7.plot(c7, p7, label='Preference curve', color='black')
ax7.set_xlim((525, 721))
ax7.set_ylim((0, 102))
ax7.set_title('Museum staff')
ax7.set_xlabel('Depots p4 [m2]')
ax7.set_ylabel('Preference score')
ax7.grid()
ax7.legend()
ax7.grid(linestyle = '--')

#fig = plt.figure()
ax8 = fig.add_subplot(7, 2, 8)
ax8.plot(c8, p8, label='Preference curve', color='black')
ax8.set_xlim((7423, 9960))
ax8.set_ylim((0, 102))
ax8.set_title('Museum staff')
ax8.set_xlabel('Depots s3 [m2]')
ax8.set_ylabel('Preference score')
ax8.grid()
ax8.legend()
ax8.grid(linestyle = '--')

ax9 = fig.add_subplot(7, 2, 9)
ax9.plot(c9, p9, label='Preference curve', color='black')
ax9.set_xlim((6264, 7031))
ax9.set_ylim((0, 102))
ax9.set_title('Museum staff')
ax9.set_xlabel('Installations p5 [m2]')
ax9.set_ylabel('Preference score')
ax9.grid()
ax9.legend()
ax9.grid(linestyle = '--')


ax10 = fig.add_subplot(7, 2, 10)
ax10.plot(c10, p10, label='Preference curve', color='black')
ax10.set_xlim((1207, 1648))
ax10.set_ylim((0, 102))
ax10.set_title('Museum staff')
ax10.set_xlabel('Installations s4 [m2]')
ax10.set_ylabel('Preference score')
ax10.grid()
ax10.legend()
ax10.grid(linestyle = '--')

#fig = plt.figure()
ax11 = fig.add_subplot(7, 2, 11)
ax11.plot(c11, p11, label='Preference curve', color='black')
ax11.set_xlim((3167, 3990))
ax11.set_ylim((0, 102))
ax11.set_title('Museum staff')
ax11.set_xlabel('Public p6 [m2]')
ax11.set_ylabel('Preference score')
ax11.grid()
ax11.legend()
ax11.grid(linestyle = '--')

#fig = plt.figure()
ax12 = fig.add_subplot(7, 2, 12)
ax12.plot(c12, p12, label='Preference curve', color='black')
ax12.set_xlim((1624, 2230))
ax12.set_ylim((0, 102))
ax12.set_title('Museum staff')
ax12.set_xlabel('Offices p7 [m2]')
ax12.set_ylabel('Preference score')
ax12.grid()
ax12.legend()
ax12.grid(linestyle = '--')

#fig = plt.figure()
ax13 = fig.add_subplot(7, 2, 13)
ax13.plot(c13, p13, label='Preference curve', color='black')
ax13.set_xlim((168, 281))
ax13.set_ylim((0, 102))
ax13.set_title('Museum staff')
ax13.set_xlabel('Offices s5 [m2]')
ax13.set_ylabel('Preference score')
ax13.grid()
ax13.legend()
ax13.grid(linestyle = '--')

ax1.legend()
ax2.legend()
ax3.legend()
ax4.legend()
ax5.legend()
ax6.legend()
ax7.legend()
ax8.legend()
ax9.legend()
ax10.legend()
ax11.legend()
ax12.legend()
ax13.legend()

fig.tight_layout()

#Two  lines to make our compiler able to draw:
#fig.savefig("../engineeringdesign.education/static/smafunctions.png")

Optimization#

Now we have everything for the optimization, we can run it. For more information about the different options to configure the GA, see the docstring of GeneticAlgorithm (via help()) or chapter 4 of the reader.

# We run the optimization with two paradigms
paradigm = ['minmax', 'a_fine']
marker = ['o', '*']
color = ['red', 'green']
for i in range (1, 2):
    # make dictionary with parameter settings for the GA run with the IMAP solver
    options = {
        'n_bits': 24,
        'n_iter': 400,
        'n_pop': 500,
        'r_cross': 0.8,
        'max_stall': 16,
        'aggregation': paradigm[i], # minmax or tetra
        'var_type': 'real'
    }

    # run the GA and print its result
    print(f'Run GA with IMAP')
    ga = GeneticAlgorithm(objective=objective, constraints=cons, bounds=bounds, options=options)
    score_IMAP, design_variables_IMAP, _ = ga.run()

    p1 = design_variables_IMAP[0]
    p2 = design_variables_IMAP[1]
    s1 = design_variables_IMAP[2]
    p3 = design_variables_IMAP[3]
    s2 = design_variables_IMAP[4]
    p4 = design_variables_IMAP[5]
    s3 = design_variables_IMAP[6]
    p5 = design_variables_IMAP[7]
    s4 = design_variables_IMAP[8]
    p6 = design_variables_IMAP[9]
    p7 = design_variables_IMAP[10]
    s5 = design_variables_IMAP[11]

    for n in range(12):
        print(f'Optimal result for x{str(n+1)} = {round(design_variables_IMAP[n]*100)}')
    print('investment =' + str((2580-2950) * 14142 + 2950 * (p1 + p2 + p3 + p4 + p5 + p6 + p7) * 100 + 1400 * (s1 + s2 + s3 + s4 +s5) * 100))

    print('total primary location: ' + str((p1 + p2 + p3 + p4 +p5 + p6 + p7) * 100))
    print('total secondary location: ' + str((s1 + s2 + s3 + s4 +s5) * 100))

    """
    Now we have the results, we can make some figures. First, the resulting design variables are plotted into the solution 
    space. Secondly, we can plot the preference functions together with the results of the optimizations.
    """
    # calculate individual preference scores for the results of the GA, to plot them on the preference curves
    c1_res = (((2580-2950) * 14142 + 2950 * (p1 + p2 + p3 + p4 + p5 + p6 + p7) * 100 + 1400 * (s1 + s2 + s3 + s4 +s5) * 100) / 1000000)
    p1_res = pchip_interpolate([70, 71, 74], [100, 70, 0], (c1_res))

    c2_res = (design_variables_IMAP[0] * 100)
    p2_res = pchip_interpolate([7901, 9703, 10154], [0, 20, 100], (c2_res))

    c3_res = (design_variables_IMAP[1] * 100)
    p3_res = pchip_interpolate([1354, 1375, 1438], [0, 70, 100], (c3_res))

    c4_res = (design_variables_IMAP[2] * 100)
    p4_res = pchip_interpolate([693, 697, 714], [0, 80, 100], (c4_res))

    c5_res = (design_variables_IMAP[3] * 100)
    p5_res = pchip_interpolate([941, 1050, 1378], [0, 70, 100], (c5_res))

    c6_res = (design_variables_IMAP[4] * 100)
    p6_res = pchip_interpolate([56, 62, 84], [0, 80, 100], (c6_res))

    c7_res = (design_variables_IMAP[5] * 100)
    p7_res = pchip_interpolate([525, 652, 721], [0, 35, 100], (c7_res))

    c8_res = (design_variables_IMAP[6] * 100)
    p8_res = pchip_interpolate([7423, 7930, 9960], [0, 80, 100], (c8_res))

    c9_res = (design_variables_IMAP[7] * 100)
    p9_res = pchip_interpolate([6264, 6417, 7031], [0, 80, 100], (c9_res))

    c10_res = (design_variables_IMAP[8] * 100)
    p10_res = pchip_interpolate([1207, 1295, 1648], [0, 80, 100], (c10_res))

    c11_res = (design_variables_IMAP[9] * 100)
    p11_res = pchip_interpolate([3167, 3702, 3990], [0, 35, 100], (c11_res))

    c12_res = (design_variables_IMAP[10] * 100)
    p12_res = pchip_interpolate([1624, 1776, 2230], [0, 70, 100], (c12_res))

    c13_res = (design_variables_IMAP[11] * 100)
    p13_res = pchip_interpolate([168, 191, 281], [0, 80, 100], (c13_res))

    ax1.scatter(c1_res, p1_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax2.scatter(c2_res, p2_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax3.scatter(c3_res, p3_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax4.scatter(c4_res, p4_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax5.scatter(c5_res, p5_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax6.scatter(c6_res, p6_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax7.scatter(c7_res, p7_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax8.scatter(c8_res, p8_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax9.scatter(c9_res, p9_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax10.scatter(c10_res, p10_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax11.scatter(c11_res, p11_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax12.scatter(c12_res, p12_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)
    ax13.scatter(c13_res, p13_res, label='Optimal solution ' + paradigm[i], color= color[i], alpha=.5)

Results#

Now we have the results, we can make some figures. First, the resulting design variables are plotted into the solution space. Secondly, we can plot the preference functions together with the results of the optimizations.

ax1.legend()
ax2.legend()
ax3.legend()
ax4.legend()
ax5.legend()
ax6.legend()
ax7.legend()
ax8.legend()
ax9.legend()
ax10.legend()
ax11.legend()
ax12.legend()
ax13.legend()
fig.tight_layout()

#Two  lines to make our compiler able to draw:
#fig.savefig("../engineeringdesign.education/static/smaresult.png")
#sys.stdout.flush()